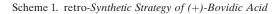
A Concise Total Synthesis of (+)-(6S,9R,10R)-Bovidic Acid

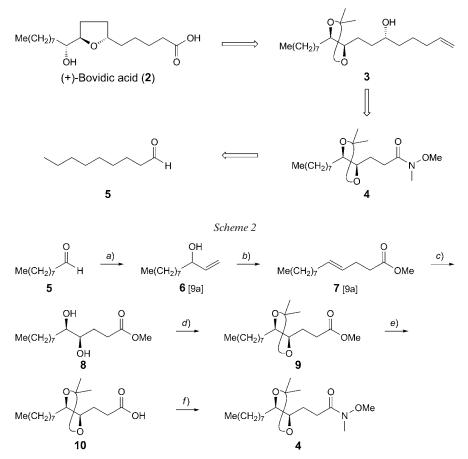
by Sachin B. Wadavrao, Ramesh S. Ghogare, and A. Venkat Narsaiah*

Organic and Biomolecular Chemistry Division, Indian Institute of Chemical Technology, Hyderabad-500007, Telangana, India (fax: +91-40-27160387; e-mail: vnakkirala@iict.res.in)

A straightforward strategy for the stereoselective synthesis of (+)-bovidic acid has been developed in eleven steps with an overall yield of 8.85%. The synthesis started from commercially available nonanal, and the key reactions involved were *Sharpless* asymmetric dihydroxylation, *Grignard* reaction, and *Corey–Bakshi–Shibata* reduction.

Introduction. – Worldwide threat of biting arthropods transmitted diseases, with their associated morbidity and mortality, underscores the need for effective insect repellents to protect people. Repellents have been isolated from many naturally occurring plants and animals [1]. Integument of some animals is used for a comparative study with secretary components of macroscopic glands [2]. This outer tough protective part of animals is a source of natural products such as fatty acids, alcohols, and triacylglycerols [3]. These natural products inhibit potential pathogens and repel insects [4].

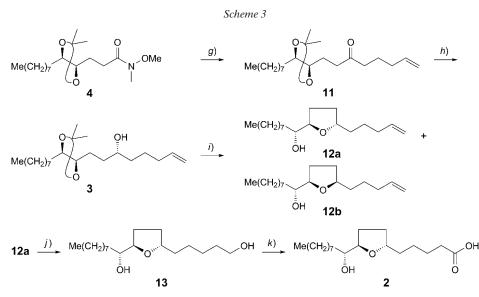

Oliver et al. reported the C₁₈ natural compound (–)-gaur acid (=10-hydroxy-6,9oxidooctadecanoic acid; **1**), with an absolute configuration of (6R,9S,10S) [5]. Recently, *Ishii et al.* isolated a C₁₈ hydroxy-furanoid acid from pelage extracts of *B. frontalis*, called (+)-bovidic acid (**2**), with the absolute configuration (6S,9R,10R), *i.e.*, the enantiomer of **1**[6]. It exhibits insect repellent activity, which is effective to provide protection against *Aedes aegypti* (L) mosquitoes. The configuration of the tetrahydrofuran moiety of (+)-bovidic acid was confirmed by the comparison of its ¹H- and ¹³C-NMR data with those of synthetic compounds. The configuration at C(10) bearing a secondary OH group was determined by NOE, *Mosher* ester analysis method, and circular dichroism (CD) *Tweezer* methods [6]. So far, only one synthesis of (+)-bovidic acid has been published [7].



Results and Discussion. – As part of our ongoing research on the synthesis of biologically active natural and synthetic compounds [8], herein we report the stereoselective synthesis of (+)-bovidic acid (2) by applying *Sharpless* asymmetric dihydroxylation (*AD-mix*) and *Corey–Bakshi–Shibata* (*CBS*) reduction.

^{© 2015} Verlag Helvetica Chimica Acta AG, Zürich

On the basis of a strategy represented in the *retro*-synthetic analysis outlined in *Scheme 1*, the synthesis of fragment **4** started from easily available nonanal (**5**) which was subjected to vinyl *Grignard* reagent in dry THF at 0° to furnish the secondary allyl alcohol **6** in 90% yield (*Scheme 2*). The orthoester *Johnson–Claisen* rearrangement [9] of **6** with MeC(OMe)₃ in the presence of a catalytic amount of propanoic acid at reflux afforded the γ , δ -unsaturated ester **7** in 85% yield. Compound **7** was subjected to *Sharpless* asymmetric dihydroxylation [10] with OsO₄ and K₃Fe(CN)₆ as co-oxidant in the presence of MeSO₂NH₂ and (DHQD)₂PHAL as the chiral ligand in 'BuOH/H₂O (1:1) as solvent at 0° to give diol **8** in 80% yield with 94% de ($[\alpha]_{D}^{27} = -44.1$ (c = 0.5, CHCl₃)). Treatment of **8** with a catalytic amount of camphorsulfonic acid (CSA) and



a) CH₂=CHMgBr, MgBr₂ · Et₂O, THF, 0°, 1 h; 90%. *b*) MeC(OMe)₃, propanoic acid, 142°, 12 h; 85%. *c*) OsO₄, Hydroquinidine phtalizine-1,4-diyl diether ((DHQD)₂PHAL), K₃Fe(CN)₆, K₂CO₃, MeSO₂NH₂, 'BuOH/H₂O 1:1, 0°, 24 h; 80%. *d*) 2,2-Dimethoxypropane (2,2-DMP), camphorsulfonic acid (CSA), CH₂Cl₂, 0°, 2 h; 95%. *e*) LiOH · H₂O, THF/H₂O 1:1, r.t., 10 h; 85%. *f*) Me(NH)OMe · HCl, CICOOEt, Et₃N, 0°, 1 h; 80%.

2,2-dimethoxypropane (2,2-DMP) resulted in the acetonide protected compound **9** in 95% yield. The latter was treated with LiOH in THF/H₂O (1:1) at room temperature to give acid **10** in 85% yield, which was transformed into the corresponding *Weinreb* amide [11] **4** ($[\alpha]_{D}^{27} = +43.5$ (c = 0.5, CHCl₃)) in 80% yield by the mixed anhydride method (*Scheme* 2).

The treatment of the Weinreb amide 4 with Grignard reagent, freshly prepared from 5-bromopent-1-ene and Mg metal in dry THF at room temperature, gave the desired enone 11 in 82% yield (*Scheme 3*). Stereoselective reduction of 11 in the presence of (S)-CBS catalyst [12] afforded selectively the (6R)-configured alcohol 3 ($[\alpha]_{D}^{27} = +30.3$ $(c = 0.25, \text{CHCl}_3)$ in 80% yield. Compound **3** was converted to its methanesulfonate by using MeSO₂Cl, Et₃N, and DMAP (4-(dimethylamino)pyridine; catalytic amount) in CH₂Cl₂ followed by deprotection of the acetonide group by using aqueous CF₃COOH in CH₂Cl₂, to afford a diastereoisomeric tetrahydrofuran mixture **12a/12b** 7:3, which was separated by column chromatography. The terminal C=C bond of the more stable major isomer 12a was hydroborated to give the primary alcohol by treating with $BH_3 \cdot Me_2S$ [13] in THF, followed by treatment with NaOH and H_2O_2 to afford the corresponding alcohol 13 ($[\alpha]_{D}^{27} = +14.5$ (c = 0.5, CHCl₃)) in 75% yield. Selective oxidation of 13 with TEMPO and BAIB [14] in CH₂Cl₂/H₂O (1:1) gave the target acid **2** in 65% yield as yellowish semi-solid. The analytical and spectral properties of **2** were in good agreement with the data reported in the literature. All the products were characterized by their IR, ¹H- and ¹³C-NMR, and mass spectra, and optical-rotation data were compared with those reported in the literature.

g) CH₂=CH(CH₂)₃MgBr, THF, 0°, 2 h; 82%. h) (S)-CBS Catalyst, THF, -40° , BH₃·Me₂S, 3 h; 80%. i) 1) MsCl, Et₃N, CH₂Cl₂, 0°, 1 h; 2) CF₃COOH, CH₂Cl₂, 0° - r.t., 2 h; 70% (two steps). j) BH₃·Me₂S, THF, 0°, 3 h, then 20% NaOH, 30% H₂O₂, 3 h; 75%. k) (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO), [bis(acetyloxy)iodo]benzene (BAIB), CH₂Cl₂/H₂O 2:1, 12 h; 65%.

Conclusions. – The total synthesis of (+)-bovidic acid (2) has been accomplished, starting from a commercially available nonanal and completed in eleven steps with an overall yield of 8.85%. Key reactions to generate stereogenic centers include *Sharpless* asymmetric dihydroxylation and *Corey–Bakshi–Shibata* reduction.

S. B. W. and R. S. G. are grateful to CSIR-New Delhi for fellowships.

Experimental Part

General. All reagents were purchased from commercial sources and were used without further purification. All reactions were performed under an inert atmosphere unless noted otherwise. THF was freshly distilled over Na-benzophenone ketyl. Petroleum ether refers to the fraction boiling in the $60-80^{\circ}$ range. TLC: Pre-coated SiO₂ 60 F₂₅₄ plates (*Merck*); visualization under UV light, in an I₂ chamber, or by spraying with phosphomolybdic acid. Column chromatography (CC): silica gel (SiO₂; *Acme* grade 60-120 mesh). M.p.: *Büchi M-560* melting-point apparatus; uncorrected. Optical rotations: *Rudolph Autopol IV* polarimeter at 27°. IR Spectra: *PerkinElmer FT-IR 240-c* spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR spectra: *Bruker-300 MHz* spectrometer in CDCl₃, at 300 and 75 MHz, resp.; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. MS: *Finnigan MAT 1020* mass spectrometer operating at 70 eV; in *m/z*.

Undec-1-en-3-ol (**6**) [9a]. To a stirred soln. of *nonanal* (**5**; 3 g, 2.11 mmol) in dry THF (10 ml) was added slowly CH₂=CHMgBr (42 ml, 1M in THF, 4.22 mmol) at 0°. The mixture was stirred for an additional 1 h, after completion of the reaction (TLC), the reaction was quenched with a sat. NH₄Cl soln., and the mixture was extracted with AcOEt (2×25 ml). The combined org. layers were dried (Na₂SO₄) and concentrated. The residue was purified by CC (SiO₂; hexanes/AcOEt 8:2) to give **6** (3.23 g, 90%). Colorless liquid. IR (neat): 3415, 2926, 2855, 1709, 1639, 1461, 990, 920, 768. ¹H-NMR: 5.83 – 5.92 (*m*, 1 H); 5.22 (*dt*, *J* = 1.5, 15.8, 1 H); 5.10 (*dt*, *J* = 1.5, 9.0, 1 H); 4.09 (*d*, *J* = 5.0, 1 H); 1.46 – 1.58 (*m*, 2 H); 1.19 – 1.42 (*m*, 12 H); 0.88 (*t*, *J* = 7.0, 3 H). ¹³C-NMR: 141.2; 114.5; 73.2; 37.0; 31.8; 29.5 (2C); 29.2; 25.3; 22.6; 14.0. ESI-MS 193 ([*M* + Na]⁺).

Methyl (4E)-*Tridec-4-enoate* (7) [9a]. In a 100-ml *round-bottom flask* dried in oven, MeC(OMe)₃ (21 g, 176 mmol) and propanoic acid (0.2 ml) were added to a soln. of **6** (3 g, 17.6 mmol). The mixture was heated at reflux for 1 h in a pre-heated oil bath. After disappearence of starting material (indicated by TLC), the mixture was cooled and concentrated. The residue was purified by CC (SiO₂; hexane/AcOEt 9:1) to afford **7** (3.39 g, 85%). Colorless liquid. IR (neat): 3448, 2995, 2854, 1743, 1438, 1359, 1165, 968, 770. ¹H-NMR: 5.35 – 5.50 (m, 2 H); 3.67 (s, 3 H); 2.35 – 2.39 (m, 2 H); 2.28 – 2.33 (m, 2 H); 1.96 (q, J = 7.0, 13.5, 2 H); 1.22 – 1.34 (m, 12 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 173.3; 131.9; 127.7; 51.4; 34.1; 32.4; 31.8; 29.5; 29.4; 29.2; 29.1; 27.9; 22.6; 14.0. ESI-MS: 227 ([M + H]⁺).

Methyl (4R,5R)-4,5-*Dihydroxytridecanoate* (8). Into a 250-ml *round-bottom flask* were added 'BuOH (70 ml) and H₂O (70 ml), followed by OsO₄, (DHQD)₂PHAL, K₃Fe(CN)₆, K₂CO₃ (19.8 g, 1.4 g/ mmol), and MeSO₂NH₂ (1.34 g, 0.095 g/mmol). The resulting mixture was stirred at r.t. for *ca*. 15 min and cooled to 0°. To the cooled soln. was added **7** (3.2 g, 14.1 mmol), and the mixture was stirred for 24 h at 0°. The reaction was quenched with solid Na₂SO₃ (20 g) at r.t. The mixture was diluted with AcOEt (100 ml), and, after separation of the layers, the aq. layer was further extracted with AcOEt (2×50 ml). The combined org. layers were washed with brine (50 ml) and dried (Na₂SO₄). After evaporation of the solvent, the residue was purified by CC (SiO₂; hexane/AcOEt 5:5) to give **8** (2.9 g, 80%). White solid. M.p. 60–61°. [a]₂₇²⁷ = -44.1 (c =0.5, CHCl₃). IR (neat): 3453, 3372, 2958, 2923, 2853, 1740, 1464, 1325, 1195, 1082, 987, 817. ¹H-NMR: 4.39–4.46 (m, 1 H); 3.70 (s, 3 H); 1.57–3.60 (m, 1 H); 2.47–2.68 (m, 2 H); 2.04–2.30 (m, 3 H); 1.62–1.72 (br. s, 2 H); 1.46–1.59 (m, 3 H); 1.19–1.42 (m, 10 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 177.0; 82.8; 76.4; 73.6; 32.9; 31.8; 29.6; 29.4; 29.1; 28.6; 25.4; 24.0; 22.6; 14.0. ESI-MS: 283 ([M + Na]⁺).

*Methyl 3-[(4*R,5R)*-2,2-Dimethyl-5-octyl-1,3-dioxolan-4-yl]propanoate* (9). To a stirred soln. of 8 (2.8 g, 10.7 mmol) in CH₂Cl₂ (30 ml) at 0° was added CSA (0.25 g, 1.07 mmol) followed by 2,2-DMP (1.68 g, 16.1 mmol). The mixture was stirred for 2 h and the reaction was quenched with a sat. aq.

NaHCO₃ soln. (10 ml). The org. layer was separated, and the aq. layer further extracted with CH₂Cl₂ (2 × 25 ml). The combined org. layers were washed with brine (25 ml) and dried (Na₂SO₄), and the solvent was evaporated *in vacuo*. The residue obtained was purified by CC (SiO₂; hexane/AcOEt 9 :1) to give the **9** (3 g, 95%). Colorless liquid. $[a]_{17}^{27} = +14.9$ (c = 0.5, CHCl₃). IR (neat): 3462, 2985, 2927, 2856, 1778, 1741, 1640, 1372, 1242, 1168, 876, 722. ¹H-NMR: 3.68 (s, 3 H); 3.58–3.62 (m, 2 H); 2.38–2.60 (m, 2 H); 1.87–2.00 (m, 2 H); 1.68–1.83 (m, 2 H); 1.43–1.60 (m, 4 H); 1.38 (s, 6 H); 1.18–1.34 (m, 8 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 173.7; 108.0; 80.7; 79.8; 51.5; 32.8; 31.8; 30.5; 29.7; 29.4; 29.2; 27.9; 27.3; 27.2; 26.0; 22.6; 14.0. ESI-MS: 301 ($[M + H]^+$), 323 ($[M + Na]^+$).

3-[(4R,5R)-2,2-Dimethyl-5-octyl-1,3-dioxolan-4-yl]propanoic Acid (10). To a stirred soln. of 9 (2.8 g, 9.3 mmol) in THF/H₂O 50 :50 (30 ml) was added LiOH \cdot H₂O (0.45 g, 18.6 mmol). The resulting homogeneous soln. was stirred for 10 h at r.t., and the progress of reaction was monitored by TLC. The org. solvent was removed under reduced pressure, and the aq. residue was extracted with AcOEt (2 × 20 ml). The aq. phase was made acidic (pH 2) with solid NaHSO₄ and extracted with AcOEt (2 × 10 ml). The combined org. layers were dried (Na₂SO₄), filtered, and evaporated *in vacuo*. The obtained residue was purified by CC (SiO₂; hexane/AcOEt 7:3) to give 10 (2.2 g, 85%). [α]_D²⁷ = +23.3 (c = 0.3, CHCl₃). IR (neat): 3449, 2958, 2927, 2857, 1711, 1163, 1374, 1219, 1069, 771. ¹H-NMR: 3.60–3.65 (m, 2 H); 2.47–2.63 (m, 2 H); 1.90–1.98 (m, 1 H); 1.72–1.80 (m, 1 H); 1.44–1.56 (m, 2 H); 1.38 (s, 6 H); 1.20–1.34 (m, 12 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 178.9; 108.1; 80.6; 79.6; 46.4; 32.7; 31.7; 30.4; 29.6; 29.4; 29.1; 27.5; 27.2; 27.1; 26.0; 22.6; 14.0. ESI-MS: 287 ([M +H]⁺), 309 ([M +Na]⁺).

3-[(4R,5R)-2,2-Dimethyl-5-octyl-1,3-dioxolan-4-yl]-N-methoxy-N-methylpropanamide (4). To a stirred soln. of **10** (2.1g, 7.3 mmol) in dry CH₂Cl₂ (20 ml) were added Et₃N (0.96 g, 9.5 mmol) and ClCOOEt (0.5 g, 8.8 mmol) at 0°, and the mixture was stirred at the same temp. for 30 min. To this mixture, *N*,*O*-dimethylhydroxylamine hydrochloride (0.78 g, 8 mmol) was introduced in one lot, followed by dropwise addition of Et₃N (1.5 ml, 14.6 mmol). The mixture was then stirred for 1 h (until the disappearance of anhydride (TLC)). After completion of the reaction, the mixture was poured into H₂O (20 ml) and diluted with AcOEt (20 ml). The org. layer was separated, and the aq. layer was extracted with AcOEt (2 × 15 ml). The combined org. layers were washed with a sat. NH₄Cl soln. (15 ml), followed by brine (15 ml), and dried (Na₂SO₄). After evaporation of the solvent, the residue was separated by CC (SiO₂; hexane/AcOEt 7:3) to afford **4** (1.9 g, 80%). Viscous oil. $[a]_{27}^{D}$ = +43.5 (*c* = 0.5, CHCl₃). IR (neat): 3449, 2958, 2927, 2857, 1711, 1163, 1374, 1219, 1069, 771. ¹H-NMR: 3.69 (*m*, 3 H); 3.60-3.65 (*m*, 2 H); 3.19 (*s*, 3 H); 2.50-2.72 (*m*, 2 H); 1.90-2.0 (*m*, 1 H); 1.68-1.80 (*m*, 1 H); 1.49-1.57 (*m*, 2 H); 1.37 (*s*, 6 H); 1.21-1.35 (*m*, 12 H); 0.88 (*t*, *J* = 7.1, 3 H). ¹³C-NMR: 173.9; 107.9; 80.9; 80.2; 61.1; 32.7; 32.1; 31.8; 29.7; 29.4; 29.2; 28.4; 27.6; 27.3; 27.2; 26.0; 22.6; 22.6; 14.0. ESI-MS: 330 ([*M*+H]⁺), 352 ([*M* + Na]⁺).

*1-[(4*R,5R)-2,2-*Dimethyl-5-octyl-1,3-dioxolan-4-yl]oct-7-en-3-one* (**11**). To a stirred soln. of **4** (1.8 g, 5.47 mmol) in THF (20 ml) was dropwise added *Grignard* reagent (prepared by adding 5-bromopent-1-ene (1.2 g, 8.20 mmol) in dry THF (5 ml) to a suspension of Mg (0.39 g, 12.3 mmol) in THF (15 ml) at r.t. and stirring for 30 min) at 0°, and stirring was continued for 1 h. After completion (TLC), the reaction was quenched with a sat. aq. NH₄Cl soln. (15 ml), and the mixture was extracted with AcOEt (2×15 ml). The combined org. layers were washed with H₂O (20 ml) and brine (20 ml), dried (Na₂SO₄), and evaporated *in vacuo*. The crude product **11** (1.5 g, 82%) was obtained as pale yellow liquid. [α]_D²⁷ = +36.8 (c = 0.25, CHCl₃). IR (neat): 3449, 2958, 2927, 2857, 1711, 1163, 1374, 1219, 1069, 771. ¹H-NMR: 5.71 – 5.84 (m, 1 H); 4.96 – 5.05 (m, 2 H); 3.52 – 3.65 (m, 2 H); 2.49 – 2.69 (m, 4 H); 2.40 – 2.47 (m, 2 H); 1.87 – 2.12 (m, 2 H); 1.60 – 1.72 (m, 2 H); 1.43 – 1.57 (m, 4 H); 1.36 (s, 6 H); 1.21 – 1.34 (m, 10 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 193.0; 152.6; 132.6; 109.7; 80.6; 80.1; 32.1; 31.8; 29.6; 29.4; 29.2; 27.2; 26.5; 25.9; 22.6; 14.1. ESI-MS: 361 ([M + Na]⁺).

(3R)-1-[(4R,5R)-2,2-Dimethyl-5-octyl-1,3-dioxolan-4-yl]oct-7-en-3-ol (3). To a stirred soln. of 11 (1.4 g, 4.14 mmol) in THF (15 ml) was added (-)-(S)-methyl-CBS-oxazaborolidine (1.2 ml, 1M toluene, 1.24 mmol) at -40° and stirred for 30 min. To this mixture was added BH₃·Me₂S (0.35 ml, 4.55 mmol) slowly, and stirring at same temp. was continued for 1 h. After completion (TLC), the reaction was quenched with MeOH (0.1 ml), followed by an aq. NaHCO₃ soln. (10 ml). The mixture was extracted with CH₂Cl₂ (2 × 20 ml), and the combined org. layers were dried (Na₂SO₄) and concentrated on rotary evaporator. The crude product was purified by CC (SiO₂; hexane/AcOEt 7:3) to give **3** (1.12 g, 80%).

Colorless liquid. $[a]_D^{27} = +30.3 (c = 0.25, CHCl_3)$. IR (neat): 3449, 2958, 2927, 2857, 1711, 1163, 1374, 1219, 1069, 771. ¹H-NMR: 5.71-5.88 (*m*, 1 H); 4.92-5.05 (*m*, 2 H); 4.09-4.05 (*m*, 1 H); 3.99 (*t*, J = 7.9, 1 H); 3.62-3.70 (*m*, 1 H); 2.02-2.12 (*m*, 2 H); 1.45-1.65 (*m*, 8 H); 1.41 (*s*, 6 H); 1.18-1.37 (*m*, 14 H); 0.88 (*t*, J = 7.1, 3 H). ¹³C-NMR: 193.0; 152.6; 132.6; 109.7; 80.6; 80.1; 32.1; 31.8; 29.6; 29.4; 29.2; 27.2; 26.5; 25.9; 22.6; 14.1. ESI-MS: 341 ($[M + H]^+$).

(1R)-1-[(2R,5S)-2,3,4,5-Tetrahydro-5-(pent-4-en-1-yl)furan-2-yl]nonan-1-ol (**12a**). To a stirred soln. of **3** (1 g, 2.94 mmol) and Et₃N (0.89 g, 8.82 mmol) in CH₂Cl₂ (10 ml) at 0° was added MsCl (0.43 g, 3.82 mmol), and stirring was continued for 30 min. After total consumption of starting material (TLC), a sat. aq. NaHCO₃ soln. was added to this mixture, and the org. layer was separated. The aq. layer was re-extracted with CH₂Cl₂, and the combined org. layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was used for further reaction without purification.

To a cooled stirred soln. of the above obtained compound (1 g, 2.39 mmol) in CH₂Cl₂ (30 ml) was added 50% aq. CF₃COOH soln. (2 ml). The mixture was stirred for 1 h at 0° and the completion of reaction confirmed (TLC). Solid NaHCO₃ (2 g) was then added to decompose the excess CF₃COOH, followed by the addition of H₂O. The mixture was extracted with CHCl₃ (3 × 15 ml), and the combined org. extracts were washed with brine and dried (Na₂SO₄). After evaporation of the solvent, the residue was separated by CC (SiO₂; hexane/AcOEt 7:3) to give **12a** (0.43 g, 70%). Colorless oil. $[\alpha]_{D}^{27} = +18.5$ (c = 0.34, CHCl₃). IR (neat): 3419, 2926, 2856, 1743, 1461, 1375, 1056, 769. ¹H-NMR: 5.76–5.86 (m, 1 H); 4.98–5.04 (m, 1 H); 4.93–4.97 (m, 1 H); 3.84–3.91 (m, 1 H); 3.68–3.80 (m, 1 H); 3.32–3.38 (m, 1 H); 2.29–2.42 (m, 2 H); 1.85–2.10 (m, 4 H); 1.36–1.68 (m, 8 H); 1.20–1.35 (m, 10 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 138.6; 114.6; 114.5; 82.2; 79.6; 74.4; 35.4; 35.0; 33.9; 33.7; 33.3; 32.4; 31.8; 31.3; 29.7; 29.5; 29.2; 28.3; 27.7; 25.7; 25.6; 25.5; 14.0. ESI-MS: 283 ($[M + H]^+$), 305 ($[M + Na]^+$).

(1R)-1-[(2R,5S)-2,3,4,5-Tetrahydro-5-(5-hydroxypentyl)furan-2-yl]nonan-1-ol (13). To a stirred soln. of 12a (0.4 g, 1.41 mmol) in dry THF (5 ml) was slowly added BH₃·Me₂S (0.8 ml, 8.51 mmol) at 0°, then the mixture was warmed to r.t. and stirred further for 1.5 h. To this mixture, MeOH (0.5 ml, 17 mmol) was added slowly at 0°, followed by 3N NaOH (4.2 ml, 12.7 mmol) and 30% H₂O₂ (3.3 ml, 29.7 mmol), and stirring was continued for 1 h at r.t. The mixture was extracted with AcOEt (2 × 20 ml), and the combined org. layers were washed with brine (25 ml), dried (Na₂SO₄), concentrated, and purified by CC (SiO₂; hexane/AcOEt 7:3) to obtain 13 (0.3 g, 75%). Colorless liquid. [α]₂^T = +14.5 (c = 0.5, CHCl₃). IR (neat): 3424, 2926, 2856, 1731, 1629, 1460, 1054, 771. ¹H-NMR: 3.84–3.91 (m, 1 H); 3.69–3.73 (m, 1 H); 3.65 (t, J = 6.5, 2 H); 3.34–3.39 (m, 1 H); 1.86–2.06 (m, 4 H); 1.55–1.68 (m, 4 H); 1.36–1.54 (m, 4 H); 1.22–1.33 (m, 14 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 82.2; 79.7; 74.5; 62.8; 35.9; 35.5; 33.8; 33.2; 32.6.32.4; 31.8; 31.3; 29.7; 29.5; 29.2; 27.7; 26.0; 25.7; 25.6; 22.6; 14.1. ESI-MS: 301 ([M + H]⁺), 323 ([M + Na]⁺).

(+)-Bovidic Acid (= 5-{(2S,5R)-2,3,4,5-Tetrahydro-5-[(1R)-1-hydroxynonyl]furan-2-yl]pentanoic Acid; **2**) [6]. To a vigorously stirred soln. of **13** (0.3 g, 1 mmol) in CH₂Cl₂ (6 ml) and H₂O (3 ml) was added TEMPO (35 mg, 0.2 mmol) and [bis(acetyloxy)iodo]benzene (BAIB; 0.7 g, 2.4 mmol). Stirring was continued until TLC indicated complete conversion of the starting material. The reaction was quenched by addition of a sat. Na₂S₂O₃ soln (20 ml). The mixture was extracted with CH₂Cl₂ (2 × 10 ml), and the combined org. layers were dried (Na₂SO₄) and concentrated under reduced pressure. Purification of the crude acid by CC (SiO₂; hexane/AcOEt 4:6) afforded pure **2** (0.2 g, 65%). Yellowish semisolid. [α]₁^D² = +7.5 (c = 0.2, CHCl₃) (+7.3 (c = 0.2, CHCl₃) [7]). IR (neat): 3449, 2825, 2856, 1711, 1633, 1461, 1218, 1082, 770. ¹H-NMR: 3.84–3.92 (m, 1 H); 3.71 (q, J = 6.7, 1 H); 3.34–3.39 (m, 1 H); 2.37 (t, J = 7.6, 2 H); 1.86–2.06 (m, 2 H); 1.56–1.71 (m, 2 H); 1.44–1.53 (m, 5 H); 1.35–1.43 (m, 5 H); 1.20–1.32 (m, 12 H); 0.88 (t, J = 7.1, 3 H). ¹³C-NMR: 179.0; 81.7; 80.8; 72.0; 37.6; 33.8; 31.8; 29.7; 29.4; 29.2; 27.2; 26.8; 26.0; 25.8 (2C); 24.6; 22.6; 14.1. ESI-MS: 337 ([M + Na]⁺).

REFERENCES

- [1] N. Nicolaides, Science 1974, 186, 19.
- [2] E. S. Albone, 'Mammalian Semiochemistry: The Investigation of Chemical Signals between Mammals', John Wiley & Sons, Chichester, UK, 1984.

- M. E. Smith, S. U. Ahmed, *Res. Vet. Sci.* 1976, *21*, 250; J. C. O'Kelly, H. P. Reich, S. C. Mills, *Comp. Biochem. Physiol., B* 1980, *67*, 217; D. T. Downing, J. S. Lindholm, *Comp. Biochem. Physiol., B* 1982, *73*, 327; R. C. Noble, D. M. Jenkinson, J. D. McMaster, M. C. Nimmo, R. J. McCartney, *Res. Vet. Sci.* 1984, *37*, 120.
- [4] K. Tran, K. R. Chauhan, Biopestic. Int. 2007, 3, 53.
- [5] J. E. Oliver, P. J. Weldon, K. S. Petersen, W. F. Schmidt, M. Debboun, 'Abstracts of Papers, 225th National Meeting of the American Chemical Society', New Orleans, L. A. March 23–27, 2003; S. Ito, K. Endo, S. Inoue, T. Nozoe, *Tetrahedron Lett.* 1971, *12*, 4011; P. A. Evans, D. K. Leahy, W. J. Andrews, D. Uraguchi, *Angew. Chem., Int. Ed.* 2004, *43*, 4788.
- [6] H. Ishii, S. Krane, Y. Itagaki, N. Berova, K. Nakanishi, P. J. Weldon, J. Nat. Prod. 2004, 67, 1426.
- [7] J. S. Yadav, K. Ramesh, U. V. S. Reddy, B. V. S. Reddy, A. K. Ghamdi, *Tetrahedron Lett.* 2011, 52, 2943.
- [8] R. S. Ghogare, S. B. Wadavrao, A. V. Narsaiah, *Tetrahedron Lett.* 2013, 54, 5674; S. B. Wadavrao, A. Narikimalli, A. V. Narsaiah, *Synthesis* 2013, 45, 3383; A. V. Narsaiah, R. S. Ghogare, *Synthesis* 2011, 3271; A. V. Narsaiah, P. Narsimha, *Med. Chem. Res.* 2012, 21, 538; A. V. Narsaiah, B. Nagaiah, A. V. Narsaiah, *Helv. Chim. Acta* 2013, 96, 1948.
- [9] a) C. U. Grunanger, B. Breit, Angew. Chem., Int. Ed. 2010, 49, 967; b) W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T. T. Li, D. J. Faulkner, M. R. Peterson, J. Am. Chem. Soc. 1970, 92, 741; c) F. Ziegler, Chem. Rev. 1988, 88, 1423; d) K. K. Chan, N. Cohen, J. P. De Noble, A. C. Specian Jr., G. Saucy, J. Org. Chem. 1976, 41, 3497.
- [10] D. Xu, G. Crispino, K. B. Sharpless, J. Am. Chem. Soc. 1992, 114, 7570.
- [11] J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesini, U.-H. Dolling, E. J. J. Grabowski, *Tetrahedron Lett.* 1995, 36, 5461; S. Nahm, S. M. Weinreb, *Tetrahedron Lett.* 1981, 22, 3815.
- [12] E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551.
- [13] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277.
- [14] H. Miyaoka, M. Yamanishi, A. Hoshino, A. Kinbara, Tetrahedron 2006, 62, 4103.

Received October 10, 2014